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Abstract

This paper deals with Bayesian models given by statistical experiments and
standard loss functions. Bayes probability of error and Bayes risk are estimated by
means of classical and generalized information criteria applicable to the experiment.
The accuracy of the estimation is studied. Among the information criteria studied
in the paper is the class of posterior power entropies which includes the Shannon
entropy as a special case for the power α = 1. It is shown that the most accurate
estimate is in this class achieved by the quadratic posterior entropy of the power
α = 2. The paper introduces and studies also a new class of alternative power
entropies which in general estimate the Bayes errors and risk more tightly than
the classical power entropies. Concrete examples, tables and figures illustrate the
obtained results.

Key words: Shannon entropy, Alternative Shannon entropy, Power entropies, Alterna-
tive power entropies, Bayes error, Bayes risk, Sub-Bayes risk.

1. INTRODUCTION

In Morales, Pardo and Vajda (1996), we systematically studied generalized measures of

uncertainty of stochastic systems with finite or countable state spaces Θ and probability
distributions π on Θ, and generalized measures of informativity of random observations
X with sample probability spaces (X ,S, P ) and posterior distributions πx on Θ when
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X = x ∈ X . We investigated the general entropies H(π) as appropriate concave or Schur
concave functions of stochastic vectors π. As general characteristics of informativity of
the whole stochastic observation experiment

E = 〈(Θ, π), (X ,S, P )〉 (1.1)

we proposed the corresponding conditional entropies

H(E) =
∫

X
H(πx)dP (x) (1.2)

closely related to the general information measures

I(E) = H(π) − H(E). (1.3)

Particular attention was paid to the entropies of the form

Hφ(π) =
∑

θ∈Θ

φ(π(θ)) (1.4)

for concave functions φ(t), 0 ≤ t ≤ 1.

For φ(t) = −t log t we obtain from (1.4) the classical Shannon entropy

H1(π) = −
∑

θ∈Θ

π(θ) lnπ(θ) (1.5)

and from (1.2) and (1.3) the classical Shannon conditional entropy and Shannon informa-
tion. For φ(t) = t(1 − t) we obtain from (1.4) the alternative to the Shannon entropy

H2(π) = 1 −
∑

θ∈Θ

π2(θ) (1.6)

called the quadratic entropy by Vajda (1968), and from (1.2) and (1.3) the corresponding
quadratic conditional entropy H2(E) and quadratic information I2(E). In fact, Cover and
Hart (1967) and Vajda (1968) introduced independently H2(E) as a measure of quality
of decisions concerning the states θ ∈ Θ achievable on the basis of observations X in the
statistical experiments E .

Vajda (1968) estimated the probability of error Pe(E) of the Bayes decisions δB : X 7−→
Θ by means of the quadratic entropy H2(E) as follows

H2(E)

1 +
√

1 − H2(E)
≤ Pe(E) ≤ H2(E). (1.7)

Obviously, the accuracy of this estimation increases with decreasing level of the entropy
H2(E). This opens the possibility to replace the Bayesian characteristic Pe(E) of decision
situations E by the more smooth and computationally simpler information criterion H2(E)
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e.g. in feature selection procedures. The bounds (1.7) can be rewritten to the simpler
equivalent form

Pe(E) ≤ H2(E) ≤ Pe(E) (2 − Pe(E)) ≡ 1 − (1 − Pe(E))2 (1.8)

and it was proved in Vajda (1968) that these bounds are attainable in the class of statistical
experiments E with state spaces Θ of arbitrary sizes |Θ|. For fixed sizes |Θ| = n the lower
bound (1.7) was replaced by the more tight attainable bound

H2(E)

1 +
√

1 − nH2(E)/ (n − 1)
≤ Pe(E) (1.9)

which is equivalent to

H2(E) ≤ 1 − (1 − Pe(E))2 −
Pe(E)2

n − 1
(1.10)

but the rigorous proof for n ≥ 3 was given only later by Salichov (1974). If n → ∞ then
these bounds reduce to the previous bounds (1.7), (1.8).

The quadratic entropy (1.6) requires the operation of multiplication and summation,
and is thus computationally simpler than the Shannon entropy (1.5) and also than the
more general entropies of Rényi (1961)

HRα(π) =
1

α − 1
ln
∑

θ∈Θ

πα(θ), α > 0, α 6= 1 (1.11)

containing the Shannon entropy as the special limit case H1(π) = HR1(π) =
△

limα→1 HRα(π).
Rényi introduced the entropies axiomatically by extending and parameterizing by α the
additivity rule in the axioms used earlier by Faddeev (1957) to characterize the Shannon’s
H1(π). However, he emphasized also the alternative ”pragmatic approach” to motivate
H1(π) and its extensions as characteristics of various statistical decision problems. In this
sense for example Kovalevsky (1965) used H1(E) to obtain similar bounds as (1.8), (1.10)
to characterize the error probability Pe(E) in pattern recognition problems which inspired
among other the work of Vajda (1968). The bounds of Kovalevsky were later reinvented
and applied in different areas of statistical decisions and information processing by several
authors, e.g. Tebbe and Dwyer (1968) or Feder and Merhav (1994).

By appropriately modifying the extended additivity rule of Rényi (1961), Havrda and
Charvát (1967) axiomatically introduced the one-one modification

Hα(π) =
1

α − 1



1 −
∑

θ∈Θ

πα(θ)



 , α > 0, α 6= 1 (1.12)

of the Rényi entropies with the limit H1(π) = limα→1 Hα(π). Vajda (1969) used the
generalized informativity Hα(E) obtained by employing the general power entropy Hα(π)
in (1.2) to evaluate bounds of the type (1.8), (1.10) and proposed the conditional power
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entropy Hα(E) as a generalized feature extraction criterion. This criterion was cited later
by many authors, e.g. Kanal (1974), Devijver and Kittler (1982) or Devroye et al. (1996),
and the bounds of the type (1.8), (1.10) were later completed, modified or tightened by
Toussaint (1977), Ben Bassat (1978 ), Ben Bassat and Raviv (1978) and Harremoes and
Topsoe (2001).

Vajda and Vašek (1985) found a method for obtaining attainable bounds of the type
(1.8), (1.10) for arbitrary Schur concave entropy (1.2). These were applied later in
Morales, Pardo and Vajda (1996) and Vajda and Zvárová (2007). Here we use the results
of these papers to obtain some new attainable bounds for the probability of error Pe(E)
and to apply them in in estimation of the Bayes risks RB(E) in given experiments E with
standard loss functions. The attention is focused on the accuracy of approximation of
the Bayes probabilities of errors Pe(E) and the related Bayes risks by information criteria
of the common power type Hα(E). Perhaps the most interesting of the obtained results
is the fact that the quadratic entropy H2(E) provides the most accurate estimate in the
class of all power entropies Hα(E), α > 0. Basic concepts and auxiliary results are in
Sections 2-4. The main results are in Section 5 and 6.

2. GENERAL LOSS MODEL

Consider the classical model of Bayesian decision theory (cf. e.g. Berger (1986)) with
state of nature θ from a finite set Θ, prior probability distributions of states π = (π(θ) >
0 : θ ∈ Θ) and observations (random samples) X conditionally distributed by probability
measures Pθ on a measurable observation space (X ,S) depending on the states θ ∈ Θ. We
restrict ourselves to the important situation where the purpose of decision is identification
of the unknown state θ. Thus our decisions (actions in the sense of Berger) are states θ
from the action space Θ, and the loss functions are of the form

L : Θ × Θ 7→ [0,∞) where max
θ∈Θ

L(θ, θ) = 0, min
θ̂∈Θ

max
θ∈Θ

L(θ, θ̂) > 0. (2.1)

Thus we deal with the Bayesian model given by a statistical experiment

E = 〈π,P = {Pθ : θ ∈ Θ}〉 (2.2)

and a nontrivial loss function (2.1).

This is the standard decision-theoretic model of many real situations, in particular of
the
(1) pattern recognition where the states of nature θ represent various possible patterns
(images) and L(θ, θ̂) > 0 is the loss incurred by the wrong identifications θ̂ of these pat-
terns,
(2) classification where the states θ represent various classes of objects and L(θ, θ̂) > 0 is
the loss of misclassification
(3) information transmission where the states θ represent various possible messages trans-
mitted via communication channel (Θ, {Pθ : θ ∈ Θ},X ) with input alphabet Θ, output
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alphabet X and transition probability distributions Pθ describing distortion of messages
by the channel noise.

These concrete interpretations and their various combinations appear also in the detection

theory and stochastic control theory.

Let us briefly review basic concepts of Bayesian decision theory applicable in the
present model. Expected loss of an individual identification action θ̂ ∈ Θ is

L(π, θ̂) =
∑

θ∈Θ

L(θ, θ̂) π(θ). (2.3)

Each individual action θπ ∈ Θ with the property

θπ = argminθ̂ L(π, θ̂) (2.4)

is said to be Bayes action (Bayes decision without data) and the minimal a priori expected
loss

LB(π) = L(π, θπ) (2.5)

is a prior Bayes loss. Observation data x ∈ X are assumed to be used for identification
by means of identification rules

δ = X 7→ Θ. (2.6)

Technically, they are assumed to be S-measurable and Pθ-integrable for all θ ∈ Θ. Risk

function of the identification rule (2.6) is

R(θ, δ) =
∫

X
L(θ, δ(x)) dPθ(x), θ ∈ Θ

and its expected value

R(π, δ) =
∑

θ∈Θ

R(θ, δ)π(θ) =
∑

θ∈Θ

∫

X
L(θ, δ(x))π(θ) dPθ(x) (2.7)

is simply a risk. The minimizer

δB = argminδ R(π, δ) (2.8)

is the Bayes identification rule and

RB = RB(E , L) = R(π, δB) (2.9)

the Bayes risk of identification in the model under consideration specified by the experi-
ment E and loss function L.

It is known that in this model the Bayes identification rule exists and is given by a
relatively simple explicit formula. To demonstrate this and to find the Bayes identification
rule formula, take first into account the marginal probability distribution

P =
∑

θ∈Θ

π(θ)Pθ (2.10)
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on the observation space (X ,S) which dominates each conditional distribution Pθ in the
sense P (S) = 0 implies Pθ(S) = 0 for S ∈ S. Hence there exists the Radon-Nikodym
density

pθ(x) =
dPθ(x)

dP (x)

defined for all data x ∈ X , with values uniquely given except possibly a set Sθ ∈ S with
P (Sθ) = 0 (i.e. for P -almost all in symbols P -a.e. on X ). Then

πx = (πx(θ) =
△

π(θ)pθ(x) : θ ∈ Θ) (2.11)

is the conditional (posterior) probability distribution on Θ given data x. Indeed, by the
definition of Radon-Nikodym densities, pθ(x)

min
θ

πx(θ) ≥ 0 and
∑

θ

πx(θ) =
dP (x)

dP (x)
= 1 P -a.e. on X .

Obviously, the statistical experiment (2.2) is equivalently described by the conditional
distributions (2.11) for x ∈ X and the marginal distribution (2.10),

E = 〈π,P = {Pθ : θ ∈ Θ}〉 ≡ 〈P, Π = {πx : x ∈ X}〉. (2.12)

Using the posterior distribution (2.11) and the concept of expected loss (2.3), we can
rewrite the risk formula (2.7) into the simple form

R(πx, δ) =
∫

X
L(πx, δ(x)) dP (x). (2.13)

From here and from (2.8) we see that an identification rule δ is Bayes (in symbols δ = δB)
if and only if for P -almost all data x ∈ X the data based action δB(x) is Bayes for the
posterior distribution, πx, i.e. coincides with some θπx

defined in accordance with (2.4).
Thus the Bayes identification rule can equivalently be defined P -a.e. on X by the formula

δB(x) = θπx
≡ argminθ̂

∑

θ∈Θ

L(θ, θ̂)πx(θ). (2.14)

From here we deduce also that the Bayes risk RB is the expected posterior Bayes loss

given data x, denoted LB(πx) and defined by (2.5) with the prior distribution π replaced
by the posterior distribution πx. In other words, we deduce that

RB = R(π, δB) =
∫

X
L(πx, θπx

) dP (x) (cf. (2.13), (2.14))

=
∫

X
LB(πx) dP (x). (2.15)
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3. RELATIONS TO ZERO-ONE LOSS MODEL

A prominent role in the applications of the model of previous section plays the error loss
function

Le : Θ × Θ 7→ {0, 1}, Le(θ, θ̂) =

{

1 if θ̂ 6= θ,

0 if θ̂ = θ.
(3.1)

Here the general expected loss L(π, θ̂) reduces to the prior probability of error of the
identification action θ̂ ∈ Θ,

Le(π, θ̂) =
∑

θ∈Θ

Le(θ, θ̂)π(θ) = 1 − π(θ̂) (3.2)

The Bayes identification action θπ thus minimizes this probability of error over θ̂ ∈ Θ.
This means that the prior Bayes expected loss LB(π) given by (2.5) is the minimal prior
probability of error given by the formula

eB(π) = 1 − π(θπ), (3.3)

and called simply prior Bayes error. Similarly the posterior. Bayes expected loss LB(πx)
for data x ∈ X is in this case the minimal posterior probability of error

eB(πx) = 1 − πx(θπx
) (3.4)

called simply posterior Bayes error, as the Bayes identification action θπx
∈ Θ minimizes

over θ̂ ∈ Θ the posterior error probability 1 − π(θ̂). Finally by (2.15) and the equality
LB(πx) = eB(πx), the Bayes risk RB = RB(E , L) of (2.9) achieved under the special loss
function L = Le coincides with the Bayes error (average minimal posterior probability of
error) depending only on the experiment E and given by the formula

eB = eB(E) =
∫

X
eB(πx) dP (x). (3.5)

As mentioned in the introduction, our intention is to evaluate or estimate performances
of Bayes identification rules in the general loss function models by means of known perfor-
mances of such rules in the simpler error loss function models. The rest of this section is
devoted to the research of this eventuality. The achieved results serve in the next section
to establish new bounds for the Bayes risk RB based partly on the bounds for the Bayes
error probability eB established in previous literature and partly on new such bounds
established in the next section.

In the general loss model (2.1) the proper losses are positive between

L− = min{L(θ, θ̂) : θ, θ̂ ∈ Θ, L(θ, θ̂) > 0},

and
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L+ = max{L(θ, θ̂) : θ, θ̂ ∈ Θ} ≥ L−

We characterize them by two parameters called median loss and loss dispersion

Λ =
L+ + L−

2
and ∆ = (L+ − Λ). (3.6)

Obviously, ∆ = 0 if and only if L(θ, θ̂) = Λ Le(θ, θ̂) and the model has zero-one losses if
and only if

(∆, Λ) = (0, 1).

Example 3.1. Let the state space Θ = {1, . . . , n} represents classification of satellite
ship images and let the loss function (2.1) be given as the matrix

(

L(θ, θ̂)
)n

θ,θ̂=1
=























0 4/5 4/5 . . . 4/5 1
4/5 0 4/5 . . . 4/5 1
4/5 4/5 0 . . . 4/5 1
...

...
...

. . .
...

...
4/5 4/5 4/5 . . . 0 1
6/5 6/5 6/5 . . . 6/5 0























where states 1 ≤ θ ≤ n − 1 represent merchant ships of n − 1 different nations and the
state θ = n represents a pirate ship. Here

L− = 4/5, L+ = 6/5 and (∆, Λ) = (2/5, 1) .

Theorem 3.1. If the general loss model of Section 2 has median loss Λ and the loss
dispersion ∆ ≥ 0, then

(i) the prior Bayes loss LB and the prior Bayes error eB satisfy the relation

|LB(π) − eB(π) Λ| ≤ eB(π) ∆/2,

(ii) for P -almost all x ∈ X , the posterior Bayes loss LB(πx) and the posterior Bayes
error eB(πx) satisfy the relation

|LB(πx) − eB(πx) Λ| ≤ eB(πx) ∆/2, (3.7)

(iii) the Bayes risk RB and the Bayes error satisfy the relation

|RB − eB Λ| ≤ eB ∆/2.
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Proof. (I) It follows from the minmax assumption in (2.1) that eB(π) = 0 if and only if
LB(π) = 0. Thus for eB(π) = 0 (i) holds and we can restrict ourselves to π with eB(π) > 0.
By (3.6), L(θ, θ̂) > 0 implies L(θ, θ̂) ∈ [L−, L+] where either L(θ, θ̂) ∈ [Λ, L+] in which
case

L(θ, θ̂) − Λ ≤ L+ − Λ = ∆/2

or L(θ, θ̂) ∈ [L−, Λ] in which case

Λ − L(θ, θ̂) ≤ Λ − L− = ∆/2.

Hence
|L(θ, θ̂) − Λ| ≤ ∆/2 for all θ, θ̂ ∈ Θ with L(θ, θ̂) > 0. (3.8)

Further, by (2.3) and (2.5),

L(π, θ̂) =
∑

θ 6=θ̂

L(θ, θ̂)π(θ) and LB(π) =
∑

θ 6=θπ

L(θ, θπ)π(θ). (3.9)

Therefore multiplying the left side of (3.8) by π(θ)/eB(π), summing over all θ 6= θπ and
using the Jensen inequality, we get

∣

∣

∣

∣

∣

∣

1

eB(π)

∑

θ 6=θπ

L(θ, θ̂)π(θ) − Λ

∣

∣

∣

∣

∣

∣

≤
∆

2
.

It remains to apply (3.9) to complete the proof of (i).

(II) Since πx given in Section 2 are probability distributions on Θ for P -almost all x ∈ X ,
(ii) follows from (i).

(III) Integrating both sides of (3.7) over X with respect to the measure P and using once
more the Jensen inequality, we get

∣

∣

∣

∣

∫

X
LB(πx)dP (x) − Λ

∫

X
eB(πx)dP (x)

∣

∣

∣

∣

≤
∆

2

∫

X
eB(πx)dP (x).

The desired result of (iii) follows from here and from the formulas (2.15) and (3.5).

Denote for a while by δe the Bayes identifier in the simpler error loss model, to dis-
tinguish it from the Bayes identifier δB in the general loss model of the previous section.
By definition, δe(x) maximizes the posterior probability πx(θ) on Θ under observation
x ∈ X . Therefore L(δe(x), θ̂) is the lowest loss among all losses L(θ, θ̂) resulting from
the decision θ̂. If we replace in the definition of the Bayes identification θ̂ = δB(x) the
posteriori expected loss

L(πx, θ̂) =
∑

θ∈Θ

L(θ, θ̂)πx(θ) (c.f. (2.14) and (2.4))

by the a posteriori most probable loss L(δe(x), θ̂) then the corresponding identifier

δSB(x) = argminθ̂L(δe(x), θ̂) (3.10)
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is an interesting alternative to the Bayes identifier δB(x). We call it a sub-Bayes identifier.

It is simpler than δB(x) since it minimizes one particular loss profile L(δe(x), θ̂) while δB(x)
minimizes the mixture

∑

θ∈Θ

L(θ, θ̂)πx(θ) (cf. (2.14)

of all loss profiles. It seems to be a suitable alternative to the Bayes δB when fast on-line
decisions δ : X → Θ are needed in the situations with fixed experiment E and loss function
L(θ, θ̂) fluctuating out of the control of the decision maker.

The following Theorem 3.2 deals with the sub-Bayes risk

RSB = R(π, δSB). (3.11)

Theorem 3.2. Consider the general loss model of Section 3 with median loss Λ > 0
and loss dispersion ∆ ≥ 0.

(i) For P -almost all x ∈ X the posterior Bayes loss LB(πx) = L(πx, δB(x)) and the
posterior sub-Bayes loss L(πx, δSB(x)) satisfy the relation

0 ≤ L(πx, δSB(x)) − L(πx, δB(x)) ≤ eB(πx) ∆,

where eB(πx) is the posterior Bayes error (3.4).

(ii) The Bayes risk RB and the sub-Bayes risk RSB satisfy the relation

0 ≤ RSB − RB ≤ eB ∆,

where eB is the Bayes error (3.5).

Proof. (I) Since for P -almost all x ∈ X

δB(x) = argminθ̂L(πx, θ̂),

the left inequality in (i) is clear. By (2.3)

L(πx, δSB(x)) = L(δe(x), δSB(x)) πx(δe(x)) + M(x)

for
M(x) =

∑

θ 6=δe(x)

L(θ, δSB(x)) ≤ (Λ + ∆/2) [1 − πx(δe(x))].

Similarly,

L(πx, δB(x)) = L(δe(x), δB(x)) πx(δe(x)) + N(x) ≤ L(δe(x), δSB(x)) πx(δe(x)) + N(x)

for
N(x) =

∑

θ 6=δe(x)

L(θ, δB(x)) ≥ (Λ − ∆/2) [1 − πx(δe(x))].
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Therefore
L(πx, δSB) −L(πx, δB) ≤ [1 − πx(δe(x))] ∆

and (i) follows from (3.4) where θπx
is nothing but the Bayes identifier δe(x).

(II) By (3.3)

RB =
∫

X
L(πx, δB(x)) dP (x)

and by (3.11) and (2.7)

RSB =
∫

X
L(πx, δSB(x)) dP (x).

Thus (ii) obviously follows from the already proved inequality in (i) and from the formula
(3.5) for the Bayes error eB.

4. GENERALIZED INFORMATION CRITERIA

In this section and in the rest of the paper we denote by n = |Θ| the number of states in
Θ. We study estimates of Bayes errors eB(π), eB(πx) and eB = eB(E) (or more generally,
the Bayes losses LB(π), LB(πx) and Bayes risks RB = RB(E)) by means of information
criteria H(π), H(πx) and

H = H(E) =
∫

X
H(πx) dP (x)

measuring the uncertainties (entropies) of realizations of states of nature θ from individual
stochastic sources (Θ, π), (Θ, πx), or from systems of such sources E = {(Θ, πx) : x ∈ X}
where x are data (realizations of random observations X with the sample space (X ,S, P ))
For details about these concepts and notations see sections 2 and 3.

Classical Shannon information criteria are based on the Shannon entropy (here mea-
sured in nats instead of bits)

H(π) =
∑

θ∈Θ

φ(π(θ)), φ(t) = −t ln t.

In Section 1 we mentioned their generalizations based on the power entropies

Hα(π) =
∑

θ∈Θ

φα(π(θ)), α > 0 (4.1)

where for α 6= 1

φα(t) =







1
α−1

[t(1 − tα−1)] if α 6= 1

limα→1 φα(t) = −t ln t if α = 1.
(4.2)

Hence

Hα(π) =















1
α−1

[1 −
∑

θ∈Θ π(θ)α] if α 6= 1

limα→1 Hα(π) = −
∑

θ∈Θ π(θ) ln π(θ) if α = 1.

(4.3)
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As argued in Morales, Pardo and Vajda (1996), the desired information-theoretic
properties of the power entropies follow from the concavity of functions φα(t) on [0, 1] and
from their extremal values φα(0) = φα(1) = 0. As an example we can take the information

processing property

0 = Hα(πD) ≤ Hα(πT−1) ≤ Hα(π) ≤ Hα(πU ) = (n − n1−α)/(α − 1)

where T : Θ 7→ T is a mapping which leads to the new distribution

πT−1(τ) =
∑

θ:T (θ)=τ

π(θ)

on the new states τ ∈ T and as such represents an information processing on the state
space. The remaining symbols πD, πU stand for the Dirac and uniform probability dis-
tributions on Θ. The concavity argument applies also to the alternative power functions

φ̃α(t) = φα(1 − t) so that the same information-theoretic properties are shared by the
corresponding alternative power entropies

H̃α(π) =
∑

θ∈Θ

φ̃α(π(θ)), α > 0, (4.4)

i.e.

H̃α(π) =















1
α−1

[nπ − 1 −
∑

θ∈Θ(1 − π(θ))α] if α 6= 1

limα→1 H̃α(π) = −
∑

θ∈Θ(1 − π(θ)) ln(1 − π(θ)) if α = 1

(4.5)

where nπ denotes the number of states in Θ supporting the prior distribution π,

nπ = #{θ ∈ Θ : π(θ) > 0}.

Similarly as the classical Shannon entropy, the generalized entropies Hα(π) and H̃α(π)
are measures of the information obtained by observing the state from Θ a priori distributed
by π. One can thus expect that the minimal error probability eB(π) of identification of
this state on the basis of π is intimately related to these entropies. Since the Bayes
error eB = eB(E) in the general experiment E (c.f. (2.12)) is the average minimal error
probability

eB(E) =
∫

X
eB(πx)dP (x) (c.f. (3.5)), (4.6)

it must be similarly related to the average generalized entropies Hα(E) and H̃α(E) defined
as analogous stochastic mixtures

Hα(E) =
∫

X
Hα(πx)dP (x) and H̃α(E) =

∫

X
H̃α(πx)dP (x). (4.7)

In what follows we investigate this relation.
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In the next theorem we evaluate for all α > 0 and n =| Θ | the upper and lower
bounds

H+
α (eB) = max

eB(E)=eB

Hα(E) and H−
α (eB) = min

eB(E)=eB

Hα(E), (4.8)

by means of the auxiliary function

h(t) = −t ln t − (1 − t) ln(1 − t), 0 ≤ t ≤ 1 where 0 ln 0 = 0 (4.9)

and the auxiliary constants

aα,k =







1−k1−α

α−1
if α 6= 1

limα→1 aα,k = ln k if α = 1
and ck =

k − 1

k
, 1 ≤ k ≤ n (4.10)

as well as

bα,k =
aα,k+1 − aα,k

ck+1 − ck

, 1 ≤ k ≤ n − 1. (4.11)

In (4.8) and in the rest of the paper we use the fact that the range of the Bayesian errors
e(π) and eB is the interval

0 ≤ e(π), eB ≤ cn. (4.12)

In the proof of the next theorem are used the formulas

H+
α (e) =

1 − (n − 1)1−αeα − (1 − e)α

α − 1
, 0 ≤ e ≤ cn (4.13)

H−
α (e) =

1 − [1 − k(1 − e)]α − k(1 − e)α

α − 1
, ck ≤ e ≤ ck+1, 1 ≤ k ≤ n − 1 (4.14)

and their limits
H+

1 (e) = h(e) + e ln(n − 1), 0 ≤ e ≤ cn (4.15)

H−
1 (e) = h(k(1 − e)) + k(1 − e) ln k, ck ≤ e ≤ ck+1, 1 ≤ k ≤ n − 1 (4.16)

for the attainable upper and lower power entropy bounds

H+
α (e) = max

e(π)=e
Hα(π) and H−

α (e) = min
e(π)=e

Hα(π) (4.17)

(for details about these bounds see Theorem 2 in Morales et al. (1996)).
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Theorem 4.1. The power entropy bounds (4.8) are for every 0 ≤ eB ≤ cn explicitly
given by

H+
α (eB) =



















H+
α (eB) = 1

α−1
[1 − (n − 1)1−αeα

B − (1 − eB)α] if α 6= 1

H+
1 (eB) = h(eB) + eB ln(n − 1) if α = 1

(4.18)

(cf. (4.13), (4.16)) and

H−
α (eB) =

{

aα,k + bα,k(eB − ck) if ck ≤ eB ≤ ck+1, 1 ≤ k ≤ n − 1, 0 < α < 2
aα,neB/cn, if α ≥ 2.

(4.19)

The bounds H+
α (eB) and H−

α (eB) coincide only at the endpoints c1 = 0 and cn of the
domain of eB where

H+
α (0) = H−

α (0) = 0 and H+
α (cn) = H−

α (cn) = aα,n > 0. (4.20)

Proof. Consider an arbitrary α > 0, arbitrary constants 0 ≤ c̃ < c ≤ cn and arbitrary
distributions π, π̃ such that e(π) = c and ẽ(π̃) = c̃. Then the linear function

tHα(π) + (1 − t)Hα(π̃) of variable 0 ≤ t ≤ 1

must be bounded above by the function H+
α (tc + (1 − t)c̃) and bounded below by the

function H−
α (tc + (1− t)c̃). This implies that H+

α must be concave and H−
α convex on the

interval [c̃, c] ⊆ [0, 1]. At the same time it follows from (4.7), (4.8) and (4.17) that H+
α

must be minimal but above H+
α and H−

α must be maximal but below H−
α . Since H+

α is
concave itself, this implies H+

α = H+
α so that (4.18) follow from (4.13) and (4.15). On the

other hand, H−
α given by (4.14) and (4.16) is piecewise concave in the intervals between

the cutpoints ck, 1 ≤ k ≤ n− 1. The piecewise linear function Φα(t) of variable t ∈ [0, cn]
connecting the points [ck, H

−
α (ck)] ≡ [ck, aα,k] for 1 ≤ k ≤ n is

Φα(t) = aα,k + bα,k(t − ck) for ck ≤ t ≤ ck+1, 1 ≤ k ≤ n − 1. (4.21)

This function is convex (concave) if the sequence

Φα(ck)

ck

=
aα,k

ck

=











k(1−k1−α)
(α−1)(k−1)

if α 6= 1

limα→1 aα,k = k
k−1

ln k if α = 1

is increasing (decreasing or constant) for k = 2, 3, ...Obviously, it is constant equal 1 if
α = 2, increasing if 0 < α < 2 and decreasing if α > 2. Therefore H−

α (eB) = Φα(eB) if 0 <
α < 2 and H−

α (eB) is linear in the variable eB, equal [Φα(cn) − Φα(0)] eB/cn ≡ aα,neB/cn,
if α ≥ 2. This proves (4.19). The last assertion including relations (4.20) is clear from
what has already been proved.

In Figures 4.1 and 4.2 are drawn the curves H±
α (eB) as functions of variable eB for

α = 1/2, 3/4, 1 and α = 2, 3, 4. We see that the lower bounds H−
α (eB) for α ≥ 2 are linear

in the variable eB.
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Remark 4.1. Relation (4.15) is the well known Fano bound of information theory and
(4.13) is its extension obtained previously in Vajda (1968) for α = 2 and in Morales et al.
(1996) and other references mentioned there for remaining α > 0.

Remark 4.2. It is easy to verify that all power entropy bounds (4.13) - (4.19) are
continuous functions strictly increasing on their definition domain 0 ≤ e, eB ≤ cn from
the minimum 0 to the maximum aα,n. Therefore the inverse functions

e∓α (H) = max
H±

α (e)≤H
e and e∓B,α(H) = max

H±
α (eB)≤H

eB (4.22)

(notice the reversed order of ± and ∓ here!) are for all α > 0 continuously increasing
on their definition domain 0 ≤ H ≤ aα,n from the common minimum 0 to the common
maximum cn at the endpoints of the domain, and with different values

e−α (H) < e+
α (H) and e−B,α(H) < e+

B,α(H) (4.23)

between the endpoints. The values e±α (Hα(π)), e±α (Hα(πx)) and e±B,α(Hα(E)) are attainable
upper and lower estimates of the prior, posterior and average Bayes errors e(π), e(πx)
and eB = eB(E) based on the prior, posterior and overall power information measures
Hα(π), Hα(πx) and Hα(E).

The next theorem evaluates the upper and lower bounds

H̃+
α (eB) = max

eB(E)=eB

H̃α(E) and H̃−
α (eB) = min

eB(E)=eB

H̃α(E). (4.24)

It uses the same ck as Theorem 4.1 and for every α > 0 also the constants

ãα,k =















k−1
α−1

[

1 −
(

k−1
k

)α−1
]

if α 6= 1

limα→1 ãα,k = (1 − k) ln k−1
k

if α = 1

for 1 ≤ k ≤ n (4.25)

and

b̃α,k =
ãα,k+1 − ãα,k

ck+1 − ck

, 1 ≤ k ≤ n − 1 (4.26)

where 0 ln 0 = 0 in (4.25).

Theorem 4.2. Let α > 0 be arbitrary fixed. The alternative power entropy bounds
(4.24) are for every 0 ≤ eB ≤ cn explicitly given by

H̃+
α (eB) =



















1
α−1

[

n − 1 − eα
B − (n − 1)

(

1 − eB

n−1

)α]

if α 6= 1

limα→1 H̃
+
α (eB) = −e ln e − (n − 1 − e) ln

(

n−1−e
n−1

)

if α = 1

(4.27)
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and

H̃−
α (eB) =















ãα,k + b̃α,k(eB − ck) if ck < eB < ck+1, 1 ≤ k ≤ n − 1, α > 2

ãα,neB/cn if 0 < α ≤ 2.

(4.28)

The bounds H̃+
α (eB) and H̃−

α (eB) coincide only at the endpoints c1 = 0 and cn of the
domain of eB where

H̃+
α (0) = H̃−

α (0) = 0 and H̃+
α (cn) = H̃−

α (cn) = ãα,n > 0. (4.29)

Proof. (I) By Theorem 1 in Vajda and Vašek (1985), for every 0 ≤ e ≤ cn

e(π) = e implies H̃−
α (e) ≤ H̃α(π) ≤ H̃+

α (e) (4.30)

where the lower and upper bounds H±
α (e) are attained by the entropies Hα(π±) for the

special distributions

π+ =
(

1 − e,
e

n − 1
,

e

n − 1
...,

e

n − 1

)

and
π− = (1 − e, 1 − e, , ..., 1 − e, 1 − k(1 − e), 0, 0, ..., 0)

provided ck ≤ e ≤ ck+1 for 1 ≤ k ≤ n − 1. Hence for α 6= 1

H̃+
α (e) = H̃α(π+) =

1

α − 1

[

n − 1 − eα − (n − 1)
(

1 −
e

n − 1

)α]

(4.31)

and

H̃−
α (e) = H̃α(π−) =

k − keα − kα(1 − e)α

α − 1
(4.32)

when ck ≤ e ≤ ck+1 and 1 ≤ k ≤ n − 1. For α = 1 we get

H̃+
1 (e) = H̃1(π

+) = lim
α→1

H̃+
α (e) = −e ln e − (n − 1 − e) ln

(

n − 1 − e

n − 1

)

(4.33)

and
H̃−

1 (e) = H̃−
1 (π−) = lim

α→1
H̃−

α (e) = −ke − k(1 − e) ln [k(1 − e)] (4.34)

on the intervals ck ≤ e ≤ ck+1 for 1 ≤ k ≤ n − 1.

(II) Consider now arbitrary parameter α > 0, arbitrary constants 0 ≤ c̃ < c ≤ cn and
arbitrary distributions π, π̃ such that e(π) = c and ẽ(π̃) = c̃. Then the linear function

tH̃α(π) + (1 − t)H̃α(π̃) of variable 0 ≤ t ≤ 1

must be bounded above by the function H̃+
α (tc + (1 − t)c̃) and bounded below by the

function H̃−
α ((tc+(1− t)c̃). Similarly as in the previous proof, this implies that H̃+

α must
be concave and H̃−

α convex on the interval [c̃, c] ⊆ [0, 1]. At the same time H̃+
α must be
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minimal but above H̃+
α and H̃−

α must be maximal but below H̃−
α . Since H̃+

α is concave
itself, this implies H̃+

α =H̃+
α so that (4.27) follows from (4.31) and (4.33). On the other

hand, H̃−
α given by (4.32) and (4.34) is piecewise concave in the intervals between the

cutpoints ck, 1 ≤ k ≤ n − 1. The piecewise linear function Φ̃α(t) of variable t ∈ [0, cn]
connecting the points [ck, H̃

−
α (ck)] ≡ [ck, ãk] for 1 ≤ k ≤ n is

Φ̃α(t) = ãα,k + b̃α,k(t − ck) for ck ≤ t ≤ ck+1, 1 ≤ k ≤ n − 1.

This function is convex (concave) if the sequence

Φ̃α(ck)

ck

=
ãα,k

ck

=















k
α−1

[

1 −
(

k−1
k

)α−1
]

if α 6= 1

limα→1 ãα,k = −k ln k−1
k

if α = 1

is increasing (decreasing) for k = 2, 3, .... Obviously, it is constant equal 1 if α = 2,
decreasing if 0 < α < 2 and increasing if α > 2. Therefore H−

α (eB) = Φα(eB) if α > 2 and
H−

α (eB) is linear in eB equal [Φα(cn) − Φα(0)] eB/cn ≡ aneB/cn if 0 < α ≤ 2. This proves
(4.28). The last assertion including the equations (4.29) follow from what was already
proved above.

Remark 4.3. The entropy bounds of Theorem 4.2 seem to be a new result.

In Figures 4.3 and 4.4 are drawn the curves H̃±
α (eB) as functions of variable eB for

α = 1/2, 1, 2 and α = 3, 5, 8.

Remark 4.4. It is deductible from Figures 4.3, 4.4, and easily verified also formally,
that all alternative power entropy bounds (4.27) - (4.34) are for all α > 0 continuous
functions strictly increasing on their definition domain 0 ≤ e, eB ≤ cn from the minimum
0 to the maximum ãα,n. Therefore the inverse functions

ẽ∓α (H̃) = max
H̃±

α (e)≤H̃
e and ẽ∓B,α(H̃) = max

H̃±
α (eB)≤H̃

eB (4.35)

(notice the reversed order of ± and ∓ !) are continuously increasing on their definition
domain 0 ≤ H̃ ≤ ãα,n from 0 to cn at the endpoints but achieving different values

ẽ−α (H̃) < ẽ+
α (H̃) and ẽ−B,α(H̃) < ẽ+

B,α(H̃) (4.36)

between the endpoints. Similarly as in Remark 4.2, by plugging the prior, posterior and
overall alternative power information measures H̃α(π), H̃α(πx) and H̃α(E) in (4.36) we
obtain the attainable upper and lower estimates ẽ±α (H̃α(π)), ẽ±α (H̃α(πx)) and ẽ±B,α(H̃α(E))
of the prior, posterior and average Bayes errors e(π), e(πx) and eB = eB(E). These
estimates are compared with those of Remark 4.2 in the next section.
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5. INACCURACIES OF INFORMATION CRITERIA

Previous section demonstrated that the Bayes decision errors

e ∈ {e(π), e(πx), eB(E)} (5.1)

depend on the levels achieved by the respective information criteria (prior, posterior or
conditional power entropies and alternative power entropies)

Hα ∈ {Hα(π), Hα(πx), Hα(E)} and H̃α ∈ {H̃α(π), H̃α(πx), H̃α(E)} (5.2)

and vice versa. We remind that the range of the errors e is the interval [0, cn] and the
range of the power entropy Hα or the alternative power entropy H̃α is the interval [0, aα,n]
or [0, ãα,n] respectively, where

cn =
n − 1

n
, aα,n =







(n1−α − 1)/(1 − α) if α 6= 1

ln n if α = 1

and

ãα,n =















n−1
1−α

[

(

n
n−1

)1−α
− 1

]

if α 6= 1

(n − 1) ln n
n−1

if α = 1.

This section studies the inaccuracies of estimation of the information measures (5.2)
by means of the errors (5.1) and vice versa. For simplicity, we restrict ourselves to the
posterior Bayes errors and posterior entropies

eB = eB(E) and Hα = Hα(E), H̃α = H̃α(E)

and related estimates

H−
α (eB) ≤ H+

α (eB), H̃−
α (eB) ≤ H̃+

α (eB) (5.3)

and
e−B,α(Hα) < e+

B,α(Hα), ẽ−B,α(H̃α) < ẽ+
B,α(H̃α) (5.4)

established by Theorems 4.1, 4.2 and their corollaries. Similar results for the prior Bayes
errors and prior entropies

e = e(π) and Hα = Hα(π), H̃α = H̃α(π)

and related estimates H±
α (e), H̃±

α (e) and e±α (Hα), ẽ±α (H̃α) mentioned or established in pre-
vious section follow similarly as below.

By (5.3), under a given Bayes decision error eB the corresponding conditional entropies
Hα and H̃α are restricted to the intervals [H−

α (eB),H+
α (eB)] and [H̃−

α (eB), H̃+
α (eB)] which
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are tight estimates in the sense that all their values are achievable by these entropies in
the situations with the Bayes error eB. Therefore the interval lengths H+

α (eB)−H−
α (eB)

and H̃+
α (eB) − H̃−

α (eB) are realistic local measures of inaccuracy of these estimates and
the average inaccuracies

AIn(Hα|eB) =
1

cn

∫ cn

0
[H+

α (e) − H−
α (e))]de (5.5)

and

AIn(H̃α|eB) =
1

cn

∫ cn

0
[H̃+

α (e) − H̃−
α (e)]de (5.6)

are natural and realistic global measures of accuracy of these estimates. They can be used
to select the versions of the conditional entropies Hα and H̃α most accurately determined
by the Bayes decision error eB.

Similarly, under given conditional entropies Hα and H̃α the Bayes decision error eB is
restricted to the intervals [e−B,α(Hα), e+

B,α(Hα)] and [ẽ−B,α(H̃α), ẽ+
B,α(H̃α)] where all values

are achievable. Hence these intervals represent the most tight estimates of these entropies
by means of the error eB. The interval lengths e+

B,α(Hα)−e−B,α(Hα) and ẽ+
B,α(H̃α)−ẽ−B,α(H̃α)

are suitable local measures of inaccuracy of these estimates and the average inaccuracies

AIn,α(eB|Hα) =
1

aα,n

∫ aα,n

0
[e+

B,α(H)−e−B,α(H)]dH (5.7)

and

AIn,α(eB|H̃α) =
1

ãα,n

∫ ãα,n

0
[ẽ+

B,α(H̃)−ẽ−B,α(H̃)]dH̃ (5.8)

are natural global measures of accuracy of these estimation procedures. They can be used
to select the versions of the conditional entropies Hα and H̃α most suitable for estimation
the Bayes decision error eB.

Lemma 5.1. The power entropy bounds H±
α (eB) satisfy the integral formulas

∫ cn

0
H+

α (e) de =











1
α−1

[

n−1
n

− nα+n−2
(α+1)nα

]

if α 6= 1

1
2n

[n − 1 + (n − 2) lnn] if α = 1
(5.9)

and

∫ cn

0
H−

α (e) de =



































1
2(α−1)

∑n−1
k=1

2−k1−α−(k+1)1−α

k(k+1)
if 0 < α < 2, α 6= 1

1
2

∑n−1
k=1

ln[k(k+1)]
k(k+1)

if α = 1

(n−1)(1−n1−α)
2(α−1)n

if α ≥ 2.

(5.10)
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Proof. For α 6= 1 the result of (5.9) follows by a routine integration of the power
functions of e = eB appearing in the formula (4.18) for the upper bound H+

α (e) = H+
α (eB).

For α = 1 this result can be obtained by taking the limit for α → 1 in the already proved
version of the formula (5.9) for α 6= 1 since the integrand is bounded and continuous in
the parameter α from the neighborhood of α = 1. An alternative possibility is to integrate
the function H+

1 (e) with the use of the formula

∫

x ln xdx =
x2

2

(

ln x −
1

2

)

(5.11)

obtained by differentiating the function x2 ln x. The upper and lower formulas of (5.10)
follow by a routine integration of the linear or piecewise linear functions of e = eB ap-
pearing in the formulas (4.19) for the lower bound H−

α (e) = H−
α (eB). The middle formula

of (5.10) can be obtained similarly as above, by taking the limit for α → 1 in the al-
ready proved upper formula of (5.10). Alternatively, we can integrate the piecewise linear
function H−

1 (e) = H−
1 (eB) of (4.16). Details can be found in Appendix 1.

Formula (5.9) was obtained previously by Vajda and Zvárová (2007). Formula (5.10)
is new as well as both formulas of the next lemma.

Lemma 5.2. The alternative power entropy bounds H̃±
α (eB) satisfy the integral formulas

∫ cn

0
H̃+

α (eB) deB =



















1
α−1

[

(n−1)2

n
− (n−1)2

α+1
+ n(n−2)

α+1

(

n−1
n

)α+1
]

if α 6= 1

(n−1)2

2n

[

1 + (n − 2) ln n−1
n

]

if α = 1

(5.12)

and

∫ cn

0
H̃−

α (eB) deB =























(n−1)2

2n(α−1)

[

1 −
(

n−1
n

)α−1
]

if 0 < α ≤ 2, α 6= 1

(n−1)2

2n
ln n

n−1
if α = 1

1
2(α−1)

∑n−1
k=1

2k−1−(k−1)( k−1

k )
α−1

−k( k
k+1)

α−1

k(k+1)
if α > 2.

(5.13)

Proof. Similarly as in the previous proof, for α 6= 1 the result of (5.12) follows by a
routine integration of the power functions of e = eB appearing in the formula (4.27) for
the upper bound H̃+

α (eB). For α = 1 this result can be obtained by taking the limit for
α → 1 in the already proved version of the formula (5.12) for α 6= 1 since the integrand
H̃+

α (e) = H̃+
α (eB) is bounded and continuous in the parameter α from the neighborhood

of α = 1. Again, an alternative is to integrate H̃+
1 (e) using (5.11). The upper and lower

formulas of (5.13) follow by a routine integration of the linear or piecewise linear functions
of e = eB appearing in the formulas (4.28) for the lower bound H̃−

α (e) = H̃−
α (eB). The

middle formula of (5.13) can be obtained by taking the limit for α → 1 in the already
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proved upper formula of (5.13) since the integrand H̃−
α (e) is bounded and continuous in

the parameter α from the neighborhood of α = 1. Details can be found in Appendix 1.

Theorem 5.1. The average inaccuracies AIn(Hα|eB) and AIn(H̃α|eB) of estimation of
the power entropies Hα = Hα(E) and H̃α = H̃α(E) by means of the Bayes error eB = eB(E)
are given by the formulas

AIn(Hα|eB) =
1

cn

(∫ cn

0
H+

α (e)de −
∫ cn

0
H−

α (e))de
)

(5.14)

and

AIn(H̃α|eB) =
1

cn

(∫ cn

0
H̃+

α (e)de −
∫ cn

0
H̃−

α (e)de
)

(5.15)

where the integrals are given by lemmas 5.1 and 5.2.

Proof. Clear from (5.5), (5.6) and lemmas 5.1 and 5.2.

Theorem 5.2. The average inaccuracies AIn(eB|Hα) and AIn(eB|H̃α) of estimation of
the Bayes error eB = eB(E) by means of the power entropies Hα = Hα(E) and H̃α = H̃α(E)
are given by the formulas

AIn,α(eB|Hα) =
1

aα,n

(∫ cn

0
H+

α (e)de −
∫ cn

0
H−

α (e)de
)

(5.16)

and

AIn,α(eB|H̃α) =
1

ãα,n

(∫ cn

0
H̃+

α (e)de −
∫ cn

0
H̃−

α (e)de
)

(5.17)

where the integrals are given by lemmas 5.1 and 5.2.

Proof. By the definitions of inverse functions (5.1) and (5.3), the area cn.aα,n of the
rectangle (0, cn) ⊗ (0, aα,n) representing the domain of eB (range of e−B,α(Hα)) and range
of H+

α (eB) (domain of Hα) must be the sum of integrals
∫ cn

0
H+

α (e)de +
∫ aα,n

0
e−B,α(H)dH.

Similarly we get

cn.aα,n =
∫ cn

0
H−

α (e)de +
∫ aα,n

0
e+

B,α(H)dH,

cn.ãα,n =
∫ cn

0
H̃+

α (e)de +
∫ ãα,n

0
ẽ−B,α(H̃)dH̃

and

cn.ãα,n =
∫ cn

0
H̃−

α (e)de +
∫ ãα,n

0
Ẽ+

α (H̃)dH̃
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The desired relations are clear from here and from definitions (5.7), (5.8).

Functions AIn(Hα|eB), AIn(H̃α|eB), AIn,α(eB|Hα) and AIn,α(eB|H̃α) of variable 0 <
α < 8 for the selected values of n = 2, 4, 8 and 20 are shown in Figures 5.1 - 5.4 and the
numerical values for 2 ≤ n ≤ 1000 are in Tables 5.1 - 5.4. We see from these results that
the minima of AIn,α(eB|Hα) and AIn,α(eB|H̃α) are achieved at α = 2 for all n ≥ 2. The
minima of AIn(H̃α|eB) are achieved there only for n > 4 and the remaining minima, as
well as all minima of AIn(Hα|eB), are achieved at infinite α.

Conclusion 5.1 The fact that the average inaccuracy AIn,α(eB|Hα) is minimized at α =
2 demonstrates that among the various information criteria Hα including the Shannon’s
H1 used in the literature to estimate the Bayes error eB, the most accurate is the quadratic
entropy H2 suggested for this estimation in Vajda (1968).

Conclusion 5.2 By comparing Figures 5.3 and 5.4 or Tables 5.3 and 5.4 one can see that
the inaccuracies AIn,α(eB|H̃α) are slightly less than AIn,α(eB|Hα) for almost all powers
α and the state space sizes n except the optimal power α = 2 where they coincide with
AIn,α(eB|Hα).Therefore the alternative power entropies H̃α are in general slightly better
than the classical power entropies Hα for estimation of the Bayes decision errors and
Bayes risks but the optimal versions for α = 2 are equivalent to H2.

6. INFORMATION CRITERIA IN GENERAL MODEL

In this section are proposed new new estimates of Bayes risk obtained by plugging into
the estimates of Section 5 the bounds obtained in Section 3. These estimates together
with the results on optimality of the information criteria appearing in these estimates
obtained in Section 4 represent the main results of this paper.

Throughout this section we consider the general decision situation of Section 2 with
losses (2.1) on a space Θ of size

n = |Θ|

and with an experiment E (cf. (2.2)). The losses are characterized by the median loss
and the loss range

Λ > 0, ∆ ≥ 0 cf. (3.5) (6.1)

and the whole decision situation is characterized by the prior Bayes loss, posterior Bayes
loss and Bayes risk

LB(π), LB(πx) and RB = RB(E) (cf. (2.5) and (2.9)) (6.2)

respectively.
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In the next theorem the knowledge about experiment E is represented by the prior,
posterior and average power entropies

Hα(π), Hα(πx) and Hα(E) for some α > 0 (cf. (4.3) and (4.5)) (6.3)

respectively. We study the tight upper bounds

H+
α (LB|Λ, ∆) = max

LB(π)=LB

Hα(π) ≡ max
LB(πx)=LB

Hα(πx) (6.4)

H+
α (RB|Λ, ∆) = max

RB(E)=RB

Hα(E) (6.5)

and the tight lower bounds

H−
α (LB|Λ, ∆) = min

LB(π)=LB

Hα(π) ≡ min
LB(πx)=LB

Hα(πx), (6.6)

H−
α (RB|Λ, ∆) = min

RB(E)=RB

Hα(E) (6.7)

for these entropies at given values of the prior and posterior Bayes losses and the Bayes
risk appearing in (6.2), respectively.

Theorem 6.1. The bounds (6.4)-(6.7) are given in the whole definition domains

0 ≤ LB ≤ cn(Λ + ∆/2) and 0 ≤ RB ≤ cn(Λ + ∆/2) (6.8)

by the formulas

H±
α (LB|Λ, ∆) = H±

α

(

LB

1 ∓ ∆/2

)

and H±
α (RB|Λ, ∆) = H±

α

(

RB

1 ∓ ∆/2

)

(6.9)

for H±
α (·), H±

α (·) defined in the domain [0, cn] by (4.13)-(4.16) and extended to t > cn by

H+
α (t) = H+

α (cn) ≡ aα,n, H+
α (t) = H+

α (cn) ≡ aα,n (6.10)

where

cn =
n

n − 1
and aα,n =

{

n1−α−1
1−α

if α 6= 1

ln n if α = 1
(cf. (4.10)). (6.11)

Proof. By Theorem 3.1, The Bayes errors eB(π), eB(πx) and eB = eB(E) are restricted
by the bounds

LB(π)

Λ + ∆/2
≤ eB(π) ≤ max

{

LB

1 − ∆/2
, cn

}

(6.12)

LB(π)

Λ + ∆/2
≤ eB(πx) ≤ max

{

LB

1 − ∆/2
, cn

}

(6.13)

RB(E)

Λ + ∆/2
≤ eB(E) ≤ max

{

RB(E)

Λ + ∆/2
, cn

}

(6.14)
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for cn given by (6.11) and these bounds are tight. Applying these bounds in the definitions
(6.4)-(6.7) of H±

α (LB|Λ, ∆) and H±
α (RB|Λ, ∆) and using the definitions (4.13)-(4.16) of

H±
α (e) and H±

α (eB) we get the desired formulas (6.9). The new bounds (6.4)-(6.7) are
attained because the initial bounds (4.13)-(4.16) were proved to be attained.

From the bounds of Theorem 6.1 we obtain the tight upper bounds

L+
B,α(H|Λ, ∆) = max

Hα(π)=H
LB(π) = max

Hα(πx)=H
LB(πx) (6.15)

R+
B,α(H|Λ, ∆) = max

Hα(E)=H
RB(E) (6.16)

and the tight lower bounds

L−
B,α(H|Λ, ∆) = min

Hα(π)=H
LB(π) = min

Hα(πx)=H
LB(πx) (6.17)

R−
B,α(H|Λ, ∆) = min

Hα(E)=H
RB(E) (6.18)

of the Bayes losses and risks (6.2) in the models with loss parameters Λ, ∆ and given
values of the power entropies (6.3).

Corollary 6.1. The tight upper and lower bounds (6.15) - (6.18) are given in the cor-
responding definition domains

0 ≤ H ≤ aα,n, α > 0 (6.19)

of the power entropies (6.3) by the formulas

L±
B,α(H|Λ, ∆) = e±α (H)(Λ ± ∆/2), R±

B,α(H|Λ, ∆) = e±B,α(H)(Λ ± ∆/2) (6.20)

for e±α (H), e±B,α(H) defined by (4.22).

Now we deal with the situation where the knowledge about experiment E is represented
by the prior, posterior and average alternative entropies power entropies

H̃α(π), H̃α(πx) and H̃α(E) for some α > 0 (cf. (4.5)) (6.21)

respectively. We study the tight upper bounds

H̃+
α (LB|Λ, ∆) = max

LB(π)=LB

H̃α(π) ≡ max
LB(πx)=LB

H̃α(πx) (6.22)

H̃+
α (RB|Λ, ∆) = max

RB(E)=RB

H̃α(E) (6.23)

and the tight lower bounds

H̃−
α (LB|Λ, ∆) = min

LB(π)=LB

H̃α(π) ≡ min
LB(πx)=LB

H̃α(πx), (6.24)

H̃−
α (RB|Λ, ∆) = min

RB(E)=RB

H̃α(E) (6.25)

of these entropies for given values of the prior and posterior Bayes losses and the Bayes
risk appearing in (6.2).
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Theorem 6.2. The bounds (6.4)-(6.7) are given in the whole definition domains

0 ≤ LB ≤ cn(Λ + ∆/2) and 0 ≤ RB ≤ cn(Λ + ∆/2) (6.26)

by the formulas

H̃±
α (LB|Λ, ∆) = H̃±

α

(

LB

1 ∓ ∆/2

)

and H̃±
α (RB|Λ, ∆) = H̃±

α

(

RB

1 ∓ ∆/2

)

(6.27)

for H̃±
α (·), H±

α (·) defined in the domain [0, cn] by (4.27), (4.28) and for H̃+
α (·), H+

α (·)
extended to t > cn by

H̃+
α (t) = H̃+

α (cn) ≡ ãα,n, H̃+
α (t) = H̃+

α (cn) ≡ ãα,n (6.28)

where

cn =
n

n − 1
and ãα,n =







n−1
1−α

[

(

n
n−1

)1−α
− 1

]

if α 6= 1

(n − 1) ln n
n−1

if α = 1
(cf. (4.10)). (6.29)

Proof. By Theorem 3.1, The Bayes errors eB(π), eB(πx) and eB = eB(E) are restricted
by the bounds (6.12) - (6.14) for cn given by (6.11) and these bounds are tight. Applying
these bounds in the definitions (6.22)-(6.25) of H̃±

α (LB|Λ, ∆) and H̃±
α (RB|Λ, ∆) and using

the definitions (4.27), (4.28) of H̃±
α (e) and H̃±

α (eB) we get the desired formulas (6.27).
The new bounds (6.27) are attained because the initial bounds (4.27), (4.28) were proved
to be attained.

From the bounds of Theorem 6.2 we obtain the tight upper bounds

L+
B,α(H̃|Λ, ∆) = max

H̃α(π)=H̃
LB(π) ≡ max

H̃α(πx)=H̃
LB(πx) (6.30)

R+
B,α(H̃|Λ, ∆) = max

H̃α(E)=H̃
RB(E) (6.31)

and the tight lower bounds

L−
B,α(H̃|Λ, ∆) = min

H̃α(π)=H̃
LB(π) ≡ min

H̃α(πx)=H̃
LB(πx) (6.32)

R−
B,α(H̃|Λ, ∆) = min

H̃α(E)=H̃
RB(E) (6.33)

of the Bayes losses and risks (6.2) in models with parameters Λ, ∆ and given values of
the power entropies (6.21).

Corollary 6.2. The attainable upper bounds (6.30) - (6.33) are given in the definitions
domains

0 ≤ H̃ ≤ ãα,n, α > 0 (6.34)

of the power entropies (6.21) by the formulas

L±
B,α(H̃|Λ, ∆) = e±α (H̃)(Λ ± ∆/2), R±

B,α(H̃|Λ, ∆) = e±B,α(H̃)(Λ ± ∆/2) (6.35)

for e±α (H̃), e±B,α(H̃) defined by (4.35).
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Conclusion 6.1 Conclusion 5.1 implies that the average inaccuracy of the interval
estimates

[

R−
B,α(Hα|Λ, ∆), R+

B,α(Hα|Λ, ∆)
]

of the Bayes risk RB = RB(E) by means of

the power entropies Hα = Hα(E) is minimized at the power α = 2.

Conclusion 6.2 Conclusion 5.2 implies that the average inaccuracy of the interval
estimates

[

R−
B,α(H̃α|Λ, ∆), R+

B,α(H̃α|Λ, ∆)
]

of the Bayes risk RB = RB(E) by means of

the power entropies H̃α = H̃α(E) is minimized at the power α = 2. Moreover, the
alternative power entropies H̃α give in general better estimates than the classical power
entropies Hα except the optimal power α = 2 where both estimates coincide.

Figures 6.1 and 6.2 illustrate the power entropy bounds H±
α (LB|Λ, ∆) for the entropy

parameters α = 1 and α = 2 and the loss function parameters (Λ, ∆) = (1, 0) and
(Λ, ∆) = (1, 2/5) taken from the concrete situation of Example 3.1. Similar illustrations
of the bounds H±

α (RB|Λ, ∆) for the same entropy and loss function parameters are in
Figures 6.3 and 6.4. Inverse functions to the bounds of Figures 6.1 - 6.4 illustrate the
corresponding prior and Bayes risk bounds L±

B,α(H|Λ, ∆) and R±
B,α(H|Λ, ∆).
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Appendix 1: Proofs of Lemmas 5.1 and 5.2

Lemma 5.1, formulas of (5.9).

(i) If α > 0, α 6= 1 then using the upper formula of (4.18) we obtain
∫ cn

0
H+

α (e) de =
∫ cn

0

1 − (n − 1)1−αeα − (1 − e)α

α − 1
de

=
1

α − 1

[

e − (n − 1)1−α eα+1

α + 1
+

(1 − e)α+1

α + 1

]
n−1

n

0

=
1

α − 1

[

n − 1

n
−

nα + n − 2

(α + 1)nα

]

.

(ii) If α = 1 then we apply in the lower formula of (4.18) the relations
∫

x ln x dx =
x2

2

[

ln x −
1

2

]

,
∫

(1 − x) ln(1 − x) dx = −
(1 − x)2

2

[

ln(1 − x) −
1

2

]

and obtain
∫ cn

0
H+

1 (e) de =
∫ cn

0
[e ln(n − 1) − e ln e − (1 − e) ln(1 − e)] de

=

[

e2

2
ln(n − 1) −

e2

2

(

ln e −
1

2

)

+
(1 − e)2

2

(

ln(1 − e) −
1

2

)

] n
n−1

0

=
1

2

(n − 1

n

)2
ln(n − 1) −

1

2

(n − 1

n

)2(

ln
n − 1

n
−

1

2

)

+
1

2

1

n2

(

ln
1

n
−

1

2

)

+
1

4

=
1

2

(n − 1

n

)2
ln n +

1

4

(n − 1

n

)2
−

1

2n2
ln n −

1

4n2
+

1

4

=
n − 2

2n
ln n +

n − 2

4n
+

1

4
=

1

2n
{n − 1 + (n − 2) lnn} .

Lemma 5.1, formulas of (5.10).

(i) If 0 < α < 2 then using the upper formula of (4.19) we obtain

∫ cn

0
H−

α (e) de =
n−1
∑

k=1

∫ ck+1

ck

[aα,k + bα,k(e − ck)]de =
n−1
∑

k=1

[

aα,ke + bα,k

e2

2
− bα,kcke

]ck+1

ck

=
n−1
∑

k=1

{

aα,k(ck+1 − ck) + bα,k

c2
k+1 − c2

k

2
− bα,kck(ck+1 − ck)

}

=
n−1
∑

k=1

{

1 − k1−α

(α − 1)k(k + 1)
+

aα,k+1 − aα,k

2
(ck+1 − ck)

}

=
n−1
∑

k=1

{

1 − k1−α

(α − 1)k(k + 1)
+

k1−α − (k + 1)1−α

(α − 1)2k(k + 1)

}

=
1

2(α − 1)

n−1
∑

k=1

2 − k1−α − (k + 1)1−α

k(k + 1)
.
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(ii)If α ≥ 2, then using the lower formula of (4.19) we obtain

∫ cn

0
H−

α (e) de =
aα,n

cn

∫ cn

0
e de =

aα,n

cn

c2
n

2
=

aα,ncn

2
=

(n − 1)(1 − n1−α)

2(α − 1)n
.

Lemma 5.2, formulas (5.12).

(i) If α > 0, α 6= 1, then by the upper formula of (4.27)

∫ cn

0
H̃+

α (e) de =
∫ cn

0

(n − 1) − eα − (n − 1)1−α(n − 1 − e)α

α − 1
de (x = n − 1 − e)

=
1

α − 1

{

(n − 1)2

n
−

1

α + 1

(n − 1

n

)α+1
− (n − 1)1−α

∫ n−1

n−1−cn

xα dx

}

=
1

α − 1

{

(n − 1)2

n
−

1

α + 1

(n − 1

n

)α+1

−
(n − 1)1−α

α + 1

[

(n − 1)α+1 −
(n − 1)2(α+1)

nα+1

]}

=
1

α − 1

[

(n − 1)2

n
−

(n − 1)2

α + 1
+

n(n − 2)

α + 1

(

n − 1

n

)α+1
]

.

(ii) If α = 1, then by the lower formula of (5.12)

∫ cn

0
H̃+

1 (e) de =
∫ cn

0
(−e ln e − (n − 1 − e) ln(n − 1 − e) + (n − 1 − e) ln(n − 1)) de

=
1

2

[

−e2(ln e −
1

2
) + (n − 1 − e)2(ln(n − 1 − e) −

1

2
) − (n − 1 − e)2 ln(n − 1)

]

n−1

n

0

= −
1

2

(n − 1

n

)2[

ln
n − 1

n
−

1

2

]

+
1

2

(n − 1)4

n2

[

ln
(n − 1)2

n
−

1

2

]

−
1

2

(n − 1)4

n2
ln(n − 1)

+ 0 −
(n − 1)2

2

[

ln(n − 1) −
1

2

]

+
(n − 1)2

2
ln(n − 1)

= −
1

2

(n − 1

n

)2
ln(n − 1) +

1

2

(n − 1

n

)2
ln n +

1

4

(n − 1

n

)2
+

(n − 1)4

n2
ln(n − 1)

−
1

2

(n − 1)4

n2
ln n −

1

4

(n − 1)4

n2
−

1

2

(n − 1)4

n2
ln(n − 1) +

(n − 1)2

4

=
1

2

(n − 1

n

)2
n(n − 2) ln(n − 1) −

1

2

(n − 1

n

)2
n(n − 2) ln n +

1

4

(n − 1

n

)2
2n

=
(n − 1)2

2n

[

1 + (n − 2) ln
n − 1

n

]

.
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Lemma 5.2, formulas (5.13).

(i) If 0 < α < 2, α 6= 1 then by the lower formula of (4.28) and by the definition of ãα,n

in (4.25) we have that

∫ cn

0
H̃−

α (e) de =
∫ cn

0

1

cn

ãα,ne de =
(n − 1)2

2n(α − 1)

[

1 −
(

n − 1

n

)α−1
]

.

(ii) If α = 1 then by the lower formula of (4.28) and by the definition of ãα,n in (4.25)
we have that

∫ cn

0
H̃−

α (e) de =
∫ cn

0

1

cn

ãα,ne de =
(n − 1)2

2n
ln

n

n − 1
.

(iii) If α > 2 then by the upper formula of (4.28)

∫ cn

0
H̃−

α (e) de =
n−1
∑

k=1

∫ ck−1

ck

[ãα,k + b̃α,k(e − ck)] de =
n−1
∑

k=1

ãα,k + ãα,k+1

2k(k + 1)
.

By (4.25)

ãα,k =
k − 1

α − 1

[

1 −
(k − 1

k

)α−1]

so that

ãα,k + ãα,k+1 =
1

α − 1

[

2k − 1 −
(k − 1)α

kα−1
−

kα

(k + 1)α−1

]

and, consequently,

∫ cn

0
H̃−

α (e) de =
1

2(α − 1)

n−1
∑

k=1

2k − 1 − (k − 1)
(

k−1
k

)α−1
− k

(

k
k+1

)α−1

k(k + 1)
.
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Appendix 2: Tables

n 0.1 0.2 0.5 1 1.5 2 3 5 8
2 0.428 0.370 0.252 0.153 0.107 0.083 0.063 0.049 0.040
3 1.046 0.884 0.557 0.291 0.171 0.111 0.083 0.064 0.048
4 1.687 1.398 0.832 0.394 0.210 0.125 0.094 0.070 0.050
5 2.339 1.908 1.085 0.477 0.238 0.133 0.100 0.073 0.052
6 2.997 2.413 1.320 0.547 0.259 0.139 0.104 0.075 0.052
7 3.657 2.911 1.542 0.608 0.275 0.143 0.107 0.076 0.053
8 4.318 3.403 1.751 0.662 0.289 0.146 0.109 0.077 0.053
9 4.979 3.888 1.951 0.710 0.301 0.148 0.111 0.078 0.054
10 5.639 4.368 2.142 0.754 0.310 0.150 0.113 0.079 0.054
20 12.147 8.907 3.737 1.052 0.366 0.158 0.119 0.081 0.055
30 18.482 13.105 5.002 1.235 0.393 0.161 0.121 0.082 0.055
40 24.673 17.073 6.085 1.368 0.409 0.163 0.122 0.082 0.055
50 30.746 20.871 7.047 1.472 0.420 0.163 0.123 0.082 0.055
100 59.898 38.240 10.865 1.802 0.449 0.165 0.124 0.083 0.055
200 114.685 68.720 16.321 2.139 0.470 0.166 0.124 0.083 0.055
300 166.832 96.250 20.529 2.338 0.479 0.166 0.125 0.083 0.056
400 217.298 122.004 24.083 2.480 0.485 0.166 0.125 0.083 0.056
500 266.539 146.506 27.218 2.590 0.489 0.166 0.125 0.083 0.056
1000 501.137 257.689 39.535 2.934 0.499 0.167 0.125 0.083 0.056

Table 5.1. Average inaccuracies AIn(Hα|eB) for selected α and n.

n 0.1 0.2 0.5 1 1.5 2 3 5 8
2 0.428 0.370 0.252 0.153 0.107 0.083 0.063 0.049 0.040
3 0.439 0.389 0.285 0.189 0.139 0.111 0.104 0.099 0.088
4 0.444 0.397 0.298 0.205 0.155 0.125 0.126 0.130 0.122
5 0.446 0.402 0.306 0.215 0.164 0.133 0.140 0.150 0.148
6 0.448 0.404 0.311 0.221 0.170 0.139 0.149 0.164 0.167
7 0.449 0.406 0.314 0.225 0.175 0.143 0.156 0.175 0.182
8 0.450 0.408 0.317 0.228 0.178 0.146 0.161 0.184 0.194
9 0.450 0.409 0.319 0.231 0.180 0.148 0.165 0.190 0.204
10 0.451 0.410 0.320 0.233 0.182 0.150 0.168 0.196 0.212
20 0.453 0.413 0.327 0.242 0.191 0.158 0.183 0.222 0.253
30 0.453 0.414 0.329 0.244 0.194 0.161 0.187 0.231 0.268
40 0.454 0.415 0.330 0.246 0.196 0.162 0.190 0.236 0.276
50 0.454 0.415 0.331 0.247 0.196 0.163 0.191 0.238 0.281
100 0.454 0.416 0.332 0.248 0.198 0.165 0.194 0.244 0.291
200 0.454 0.416 0.333 0.249 0.199 0.166 0.196 0.247 0.296
300 0.454 0.416 0.333 0.249 0.199 0.166 0.196 0.248 0.297
400 0.454 0.416 0.333 0.250 0.200 0.166 0.197 0.248 0.298
500 0.454 0.417 0.333 0.250 0.200 0.166 0.197 0.249 0.299
1000 0.455 0.417 0.333 0.250 0.200 0.167 0.197 0.249 0.300
Table 5.2. Alternative average inaccuracies AIn(H̃α|eB) for selected α and n.
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n 0.1 0.2 0.5 1 1.5 2 3 5 8
2 0.222 0.200 0.152 0.111 0.091 0.083 0.083 0.106 0.142
3 0.372 0.335 0.254 0.176 0.134 0.111 0.125 0.172 0.222
4 0.459 0.413 0.312 0.213 0.157 0.125 0.150 0.210 0.264
5 0.517 0.465 0.351 0.237 0.172 0.133 0.167 0.234 0.289
6 0.560 0.504 0.380 0.255 0.182 0.139 0.179 0.250 0.306
7 0.592 0.533 0.401 0.268 0.190 0.143 0.188 0.262 0.317
8 0.619 0.557 0.419 0.279 0.196 0.146 0.194 0.271 0.326
9 0.640 0.576 0.433 0.287 0.200 0.148 0.200 0.278 0.333
10 0.658 0.592 0.446 0.295 0.204 0.150 0.205 0.283 0.339
20 0.751 0.678 0.511 0.334 0.224 0.158 0.226 0.308 0.364
30 0.790 0.714 0.540 0.351 0.232 0.161 0.234 0.317 0.372
40 0.812 0.735 0.557 0.362 0.237 0.163 0.238 0.321 0.376
50 0.826 0.748 0.569 0.369 0.240 0.163 0.240 0.323 0.379
100 0.859 0.780 0.598 0.387 0.247 0.165 0.245 0.328 0.384
200 0.880 0.801 0.618 0.402 0.252 0.166 0.248 0.331 0.386
300 0.888 0.809 0.627 0.409 0.254 0.166 0.248 0.332 0.387
400 0.892 0.813 0.632 0.413 0.255 0.166 0.249 0.332 0.388
500 0.895 0.816 0.636 0.416 0.256 0.166 0.249 0.332 0.388
1000 0.901 0.823 0.645 0.424 0.257 0.167 0.250 0.333 0.388

Table 5.3. Average inaccuracies AIn,α(eB |Hα) for selected α and n.

n 0.1 0.2 0.5 1 1.5 2 3 5 8
2 0.222 0.200 0.152 0.111 0.091 0.083 0.083 0.106 0.142
3 0.299 0.271 0.211 0.155 0.127 0.111 0.125 0.165 0.218
4 0.338 0.307 0.241 0.179 0.145 0.125 0.144 0.190 0.247
5 0.361 0.329 0.259 0.193 0.156 0.133 0.155 0.203 0.262
6 0.377 0.343 0.271 0.202 0.163 0.139 0.163 0.212 0.270
7 0.388 0.354 0.280 0.209 0.168 0.143 0.168 0.218 0.276
8 0.396 0.362 0.287 0.214 0.172 0.146 0.171 0.222 0.280
9 0.403 0.368 0.292 0.218 0.175 0.148 0.174 0.225 0.283
10 0.408 0.373 0.296 0.221 0.178 0.150 0.177 0.228 0.285
20 0.431 0.395 0.315 0.235 0.189 0.158 0.187 0.239 0.294
30 0.439 0.402 0.321 0.240 0.193 0.161 0.191 0.243 0.296
40 0.443 0.406 0.324 0.243 0.194 0.162 0.192 0.245 0.297
50 0.445 0.408 0.326 0.244 0.196 0.163 0.193 0.246 0.298
100 0.450 0.412 0.330 0.247 0.198 0.165 0.195 0.248 0.299
200 0.452 0.414 0.331 0.249 0.199 0.166 0.196 0.249 0.300
300 0.453 0.415 0.332 0.249 0.199 0.166 0.197 0.249 0.300
400 0.453 0.416 0.332 0.249 0.199 0.166 0.197 0.249 0.300
500 0.454 0.416 0.333 0.249 0.200 0.166 0.197 0.249 0.301
1000 0.454 0.416 0.333 0.250 0.200 0.167 0.197 0.250 0.301
Table 5.4. Alternative average inaccuracies AIn,α(eB |H̃α) for selected α and n.
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Appendix 3: Figures
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Figure 4.1: H±
α (eB) as functions of variable eB for α = 1/2, 3/4, 1.
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Figure 4.2: H±
α (eB) as functions of variable eB for α = 2, 3, 4.
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Figure 4.3: H̃±
α (eB) as functions of variable eB for α = 1/2, 1, 2.
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Figure 4.4: H̃±
α (eB) as functions of variable eB for α = 3, 5, 8.
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Figure 5.1: Average inaccuracies AIn(Hα|eB) for selected n as function of α.
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Figure 5.2: Alternative average inaccuracies AIn(H̃α|eB) for selected n as function of α.
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Figure 5.3 Average inaccuracies AIn,α(eB|Hα) for selected n as function of α.
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Figure 5.4: Alternative average inaccuracies AIn,α(eB|H̃α) for selected n as function of α.
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Figure 6.1: Entropy bounds H±
1 (LB|Λ, ∆) for Λ = 1 and ∆ = 0 (full line)

or ∆ = 2/5 (interrupted line).
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Figure 6.2: Entropy bounds H±
2 (LB|Λ, ∆) for Λ = 1 and ∆ = 0 (full line)

or ∆ = 2/5 (interrupted line).
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Figure 6.3: Entropy bounds H±
1 (RB|Λ, ∆) for Λ = 1 and ∆ = 0 (full line)

or ∆ = 2/5 (interrupted line).
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Figure 6.4: Entropy bounds H±
2 (RB|Λ, ∆) for Λ = 1 and ∆ = 0 (full line)

or ∆ = 2/5 (interrupted line).
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